Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons.

نویسندگان

  • M A Walsh
  • B A Graham
  • A M Brichta
  • R J Callister
چکیده

The output of superficial dorsal horn (SDH; laminae I-II) neurons is critical for processing nociceptive, thermal, and tactile information. Like other neurons, the combined effects of synaptic inputs and intrinsic membrane properties determine their output. It is well established that peripheral synaptic inputs to SDH neurons undergo extensive reorganization during pre- and postnatal development. It is unclear, however, how membrane properties or the subthreshold whole cell currents that shape SDH neuron output change during this period. Here we assess the intrinsic membrane properties and whole cell currents in mouse SDH neurons during late embryonic and early postnatal development (E15-P25). Transverse slices were prepared from lumbar spinal cord and whole cell recordings were obtained at 32 degrees C. During this developmental period resting membrane potential (RMP) became more hyperpolarized (by approximately 10 mV, E15-E17 vs. P21-P25) and input resistance decreased (1,074 +/- 78 vs. 420 +/- 27 MOmega). In addition, action potential (AP) amplitude and AP afterhyperpolarization increased, whereas AP half-width decreased. Before and after birth (E15-P10), AP discharge evoked by intracellular current injection was limited to a single AP at depolarization onset in many neurons (>41%). In older animals (P11-P25) this changed, with AP discharge consisting of brief bursts at current onset ( approximately 46% of neurons). Investigation of major subthreshold whole cell currents showed the rapid A-type potassium current (I(Ar)) dominated at all ages examined (90% of neurons at E15-E17, decreasing to >50% after P10). I(Ar) expression levels, based on peak current amplitude, increased during development. Steady-state inactivation and activation for I(Ar) were slightly less potent in E15-E17 versus P21-P25 neurons at potentials near RMP (-55 mV). Together, our data indicate that intrinsic properties and I(Ar) expression change dramatically in SDH neurons during development, with the greatest alterations occurring on either side of a critical period, P6-P10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. I. Modulation of A-type K+ currents.

The transient outward potassium currents (also known as A-type currents or IA) are important determinants of neuronal excitability. In the brain, IA is modulated by protein kinase C (PKC), protein kinase A (PKA), and extracellular signal-related kinase (ERK), three kinases that have been shown to be critical modulators of nociception. We wanted to determine the effects of these kinases on IA in...

متن کامل

Properties of sodium currents in neonatal and young adult mouse superficial dorsal horn neurons

BACKGROUND Superficial dorsal horn (SDH) neurons process nociceptive information and their excitability is partly determined by the properties of voltage-gated sodium channels. Recently, we showed the excitability and action potential properties of mouse SDH neurons change markedly during early postnatal development. Here we compare sodium currents generated in neonate (P0-5) and young adult (≥...

متن کامل

ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. II. Modulation of neuronal excitability.

Protein kinases belonging to the protein kinase A (PKA), protein kinase C (PKC), and extracellular signal-related kinase (ERK) families have been identified as key players in modulating nociception at the level of the spinal cord dorsal horn, yet little is known about the effects of these kinases on membrane properties of the dorsal horn neurons. PKA, PKC, and ERK exert inhibitory effects on tr...

متن کامل

Changes in membrane excitability and potassium currents in sensitized dorsal horn neurons of mice pups.

Rationally, an increased intrinsic excitability of dorsal horn neurons could be a factor contributing to alter the gain of the nociceptive system during central sensitization, however direct evidence is scarce. Here we have examined this hypothesis using current and voltage-clamp recordings from dorsal horn neurons in the spinal cord in vitro preparation obtained from mice pups of either sex. C...

متن کامل

The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity

A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 4  شماره 

صفحات  -

تاریخ انتشار 2009